INSTRUCTOR: Dr. David Alexander, HBH202 (x3633, dalex@rice.edu)

CLASS TIME/LOCATION: Tuesday/Thursday, 9:25am-10:40am; ROOM Keck 101

CLASS WEBSITE: See Class website on OwlSpace It is the student's responsibility to participate via the class website and to check it regularly for updated information.

OFFICE HOURS: anytime by (email) appt.

OBJECTIVES and LEARNING OUTCOMES: The main objective is to introduce students to a number of the fundamental physical processes at work in the Solar System with a focus on those processes that define the space environment. The basic theme behind the course is to identify current problems of interest to modern solar and planetary science and to explore the physics behind them. The mathematical formulation of the physics will be put in context with the research applications to help familiarize the students with the research process. Regular class lectures will be augmented by the occasional discussion topic and one of the homeworks will involve the reading and summarizing of a relevant research paper.

Students will leave the class with an understanding of some of the fundamental processes that govern the physics of the Sun and its interactions with the planets of the solar system. The class provides rudimentary introduction to plasma physics, physics of radiation, and planetary magnetic fields that provide a backdrop to the more specialized classes on these topics. In addition, students will gain a better understanding of the Earth’s space environment and its impact on robotic and human space flight.

This course will only succeed with feedback (including criticism) from the class participants. I am looking forward to active participation and healthy discussion.

Please note that I will be trying out a video-capture option for the class this year. Videos of each class will be posted online. There will be at least one perhaps two guest lectures and I may also try a flipped classroom approach on occasion.

PRE-REQUISITES: Understanding of undergraduate electrodynamics, electromagnetism, quantum mechanics (atomic physics) and the appropriate mathematics (calculus, differential equations, integral transforms). PHYS 301 and PHYS 302.

TEXT: The main text for this class will be a book I authored:

The Sun (Greenwood Guides to the Universe), David Alexander (2009)

ISBN-10: 0313340773

ISBN-13: 978-0313340772

http://tinyurl.com/n8xekqd
Unfortunately, there is no single textbook that covers all of the topics discussed in this class. The text will be augmented by class notes and additional material as merited. Suggestions for further reading will also be provided.

FORMAT: An interactive lecture course with problem solving exercises (homework), reading of research papers, in-class discussion, and two in-class exams. Students are required to prepare for any designated discussion topic prior to attending class.

GRADING:

<table>
<thead>
<tr>
<th>Task</th>
<th>Total Pts</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 homeworks</td>
<td>500 pts</td>
<td>40%</td>
</tr>
<tr>
<td>1 mid-term test</td>
<td>100 pts</td>
<td>30%</td>
</tr>
<tr>
<td>1 end-of-term test</td>
<td>100 pts</td>
<td>30%</td>
</tr>
<tr>
<td>total</td>
<td>700 pts</td>
<td>100%</td>
</tr>
</tbody>
</table>

Final grade will be determined on total score with appropriate scaling. The letter grade will be determine from the following: >90% (A), 80%-90% (B), 70%-80% (C), 60%-70% (D), <60% (F).

HOMEWORK PROBLEMS: Nine homeworks will be assigned during the semester. Eight will consist of problems associated with the work discussed in class (50 points each). One will be based on the reading and review of a research or review paper (100 points). Each problem set is due a week after being assigned unless otherwise stated. Collectively, these count for 40 percentage points towards your course grade.

TESTS: There will be two in-class open note tests during the semester worth 100 pts each and each contributing 30% each to your final grade.

DEADLINES: *Strictly Enforced!* Requests for extensions must reach and be approved by the instructor **BEFORE** the due date!

HONOR CODE: It is expected that each student will attempt the problems assigned on their own. However, active discussion of the physics in the problems is allowed to attain a clearer understanding of the issues once the problem has been attempted to the best of each student’s ability. On occasion I may specify one or more problems as being exempt from collaboration. These problems will be clearly identified. Check assignments section of website for copies of problem sets, due dates and additional information.

DATES TO NOTE:

- **Thu Sep 11** Spaceport Lecture, Wayne Hayle, McMurty Auditorium, 7pm
- **Thu Oct 9** Test #1 (tentative)
- **Tue Oct 14** Midterm recess – NO CLASS
- **Thu Oct 22** Spaceport Lecture, Kellie Gerardi, McMurty Auditorium, 7pm
- **Thu Nov 27** Thanksgiving recess – NO CLASS
Thu Dec 4

Test #2 and last class day

SPECIAL NOTE: Any student with a documented disability seeking academic adjustments or accommodations is requested to speak with me during the first two weeks of class. All such discussions will remain as confidential as possible. Students with disabilities will need to also contact Disability Support Services in the Allen Student Center.