PHYS 111: Honors Mechanics (with Lab) Fall 2018

Course Lectures: MWF, 10:00-10:50am, Herman Brown Hall 227

Instructor: Professor Anthony Chan, aac@rice.edu
Office: 308 Herman Brown Hall
Phone: 713-348-2531
Office Hours: Friday 2:00-3:30pm

Format: Lectures and problem sets, plus exams and labs. I encourage questions, especially if something is unclear – please feel free to speak up during the lectures.

Laboratories: Professor Stanley A. Dodds, dodds@rice.edu
Office: 215 Herzstein Hall
Phone: 713-348-2510

Help Sessions: Patrick Bagge, Physics and Astronomy graduate student, Patrick.Bagge@rice.edu

Main Text: Kleppner and Kolenkow, An Introduction to Mechanics, second edition, Cambridge University Press (2014). See the Rice Bookstore and/or Amazon.com. As described in the preface of the textbook, this course is “intended for students who seek to understand physics more deeply than the usual freshman level.” This textbook has been used at MIT, the University of Chicago, and Princeton.

Web Page: Login to canvas.rice.edu

General Information: This 4-credit-hour course covers content similar to PHYS 101, but the book and course assume particularly well-prepared and well-motivated students. We will cover some additional material, and certain topics will be explored in greater depth. There will be more of an emphasis on homework and a somewhat higher workload. A prerequisite for this course is knowledge of differential and integral calculus equivalent to MATH 101 and 102, or a high score on the Calculus BC advanced placement (AP) exam. Students with a strong high school background in physics and math are encouraged to take 111, particularly if they might want to major in physics or a closely related field. If you are considering switching from PHYS 111 to PHYS 101 aim to decide as soon as possible (preferably within the first two weeks of the semester).

Why Mechanics? A course in classical mechanics is typically the first course in the undergraduate physics curriculum, and serves as a foundation course for the physics and astronomy majors as well as much of science and engineering. Concepts of classical mechanics in this class include vectors, kinematics (the mathematical description of motion without reference to forces), dynamics (the mathematical description of motion with reference to forces), Newton’s laws, kinetic energy, potential energy, momentum, angular momentum, rotational motion, Newtonian gravity, and special relativity. Along the way we will use some mathematics beyond the MATH 101/102 level, including some multivariable calculus, differential equations, and complex variables, at an introductory physics-based level.
Problem Sets: When there are not exams, there will be weekly problem sets, usually assigned on Wednesday and due the following Wednesday. These problem sets must be done under the Honor System, subject to the following:

- You may discuss problems with each other, but you must write up your solutions on your own and you must not copy solutions from any other source.
- Solutions from previous years must not be consulted.
- Homework should be turned in to the mailbox labeled “PHYS 111” opposite 304 Herman Brown Hall by 5:00 pm on the due date. Late homework will be penalized 15% per day (or part of a day) unless excused by illness or some other instructor-approved reason. Late homework must be labeled with the turn-in time and date, and if a request is made to excuse the penalty it must be sent by email to the course instructor stating the problem set number, the turn-in time and date, and the reason the homework is late.
- Graded homework papers will be returned in class.
- Numerous resources are available for physics-problem-solving help online. These sites can be reasonable tools when seeking additional examples of problems or trying to learn difficult concepts. However, these sites are not permitted for use on the problem sets or exams.
- Help sessions will take place weekly for each problem set. These are scheduled for Fridays 4:00-5:30pm in Space Science 106, and Mondays 3:00pm-5:00pm in George R. Brown Hall W211. These are an opportunity to get together with the Help Session teaching assistant(s) and classmates, and work collaboratively to understand the material.
- When I compute final grades, I will drop your lowest homework score.

Working hard on the problems is the best way to learn the material. Your textbook provides some worked examples, and I will do some in class, but actually thinking about, setting up, and solving problems yourself is the best way to become proficient. Typically, completion of a problem set involves material from the lectures, the textbook, and the help sessions, and a substantial amount of time and effort. Please, do not look at solutions from previous years – as well as being an Honor Code violation, you would be less well prepared for future problems (including exam problems!), compared to solving them yourself.

Exams: The two “midterm” exams will be timed take-home exams. You may use the textbook (K&K), your class lecture notes, and a formula sheet written by you. The exams will be made available from the department office in Brockman Hall during the specified exam periods (see the Tentative Schedule on page 4; there is usually a one-week Wednesday-to-Tuesday period for exam pickup, excluding Friday, Saturday, and Sunday, and the exam must be returned within 24 hours). You may not collaborate with other students on the exams, or use other resources (e.g., the web). The final exam is an in-class exam scheduled by the Registrar (not me) sometime in the final exam period. Previous years’ exams must not be consulted unless I place them on the course webpage.

Laboratories: The laboratory part of PHYS 111 labs will be run by Professor Dodds. It will have flexible hours and include six experiments. More information on the labs is available on the course website. Questions and comments about the labs should be directed to Professor Dodds.

Make-ups: Make-ups for missed problem sets, exams, or laboratories will be at the discretion of the instructor. If you have university business or a conflicting class, notify us well beforehand, by email. If you have a serious reason beyond your control (for example: your own illness, or a death in the family), notify the instructor as soon as possible by email.
Missed lectures: If you miss a lecture (or a small number of lectures) there is no need to notify the instructor; just get a copy of the missed material from a classmate. Please note that the lectures are very important for the class -- there are things in the lectures that are not in the book.

Grading:

- Exam 1: 20%
- Exam 2: 20%
- Final: 25%
- Problem Sets: 25%
- Labs: 10%

The course is graded such that I usually set the mean or median overall grade near the dividing line between B and B+. This is generally different from the “90%+ = A” scale. To give you a sense of the numbers, in recent years the mean overall grade was typically close to a 79, and the grade breakdown was typically 95+ = A+; 90-95 = A; 85-90 = A-; 79-85 = B+; 74-79 = B, etc. As mentioned above, when I compute final grades I will drop your lowest homework score.

Other resources: Here are brief descriptions of some alternate books and websites.

- Kittel, Knight, and Ruderman, *Mechanics (Berkeley Physics Course Vol. 1)*. This is similar to K&K. It was written in the early 1970s as part of a curriculum development effort by the University of California at Berkeley. It’s out of print, but used copies are around, and it’s pretty good (though dated in places).
- Feynman, Leighton, and Sands, *The Feynman Lectures on Physics, Vol. 1*. This is the first volume of the famous 3-volume set, derived from Feynman’s 1st year physics course at Cal Tech. The official website is also very useful, with problems and a forum.
- Serwey and Jewett, *Physics for Scientists and Engineers*. This book has been used for PHYS 101. The book’s great strength is a large number of problems with a broad distribution in difficulty. The electricity and magnetism part of this has been used for PHYS 102. I believe you can buy the mechanics and E&M parts of the book separately.
- Fishbane, Gasiorowicz, and Thornton, *Physics for Scientists and Engineers*. This is very much like Serwey and Jewett, with lots of example problems. Broad, not too deep.
- Yale's Physics I course - youtube lectures. Also very good.
- Physics applets. A list of links to relevant physics applets and flash animations. Good for getting some physical intuition.

Students with Disabilities: Any student with a documented disability seeking academic adjustments or accommodations is requested to speak with the instructor during the first two weeks of class. All such discussions will remain as confidential as possible. Students with disabilities are encouraged to also contact Disability Support Services in the Allen Center (e-mail: adarice@rice.edu, phone: 713-348-5841) during the first two weeks of class so that timely and appropriate arrangements may be made.
Tentative Schedule *(This will be updated during the semester.)*

<table>
<thead>
<tr>
<th>Week of</th>
<th>K&K Reading</th>
<th>Problem Sets & Exams</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aug 20</td>
<td>1.1-1.11, 2.7, 2.8</td>
<td>Orientation, units, vectors, coordinates</td>
<td></td>
</tr>
<tr>
<td>2 Aug 27</td>
<td>2.1-2.6, 2.9, 2.10</td>
<td>PS 1 due</td>
<td>Kinematics, Newton’s laws</td>
</tr>
<tr>
<td>3 Sep 3</td>
<td>3.1-3.4</td>
<td>PS 2 due</td>
<td>Forces and motion: friction, circular motion</td>
</tr>
<tr>
<td>4 Sep 10</td>
<td>3.5-3.7</td>
<td>PS 3 due</td>
<td>Forces and motion: drag, harmonic motion</td>
</tr>
<tr>
<td>5 Sep 17</td>
<td>4.1-4.10</td>
<td>PS 4 due</td>
<td>Momentum, systems of N particles</td>
</tr>
<tr>
<td>6 Sep 24</td>
<td>9.1-9.5</td>
<td>Exam 1 due</td>
<td>Rockets, pseudo-forces, rotating frames</td>
</tr>
<tr>
<td>7 Oct 1</td>
<td>5.1-5.8, 5.10, 5.11</td>
<td>PS 5 due</td>
<td>Coriolis force, conservation of energy</td>
</tr>
<tr>
<td>8 Oct 8</td>
<td>6.1-6.3, 6.5</td>
<td>PS 6 due</td>
<td>Energy diagrams, stability, and collisions</td>
</tr>
<tr>
<td>9 Oct 15</td>
<td>7.1-7.6</td>
<td>PS 7 due</td>
<td>Rotational motion, angular momentum</td>
</tr>
<tr>
<td>10 Oct 22</td>
<td>7.7, 7.8, 8.1-8.6</td>
<td>PS 8 due</td>
<td>Rigid body motion</td>
</tr>
<tr>
<td>11 Oct 29</td>
<td>10.1-10.6, 11.1-11.2</td>
<td>Exam 2 due</td>
<td>Central force motion</td>
</tr>
<tr>
<td>12 Nov 5</td>
<td>11.3-11.6, 12.1-12.4</td>
<td>PS 9 due</td>
<td>Harmonic oscillators</td>
</tr>
<tr>
<td>13 Nov 12</td>
<td>12.5-12.11</td>
<td>PS 10 due</td>
<td>Special relativity</td>
</tr>
<tr>
<td>14 Nov 19</td>
<td>Ch. 13</td>
<td>PS 11 due</td>
<td>Special relativity</td>
</tr>
<tr>
<td>15 Nov 26</td>
<td>Ch. 14</td>
<td></td>
<td>Special relativity + wrap-up</td>
</tr>
</tbody>
</table>

* These weeks have only two lectures.

Reading: The K&K Reading is very important. Ideally, try to complete the K&K Reading *before* the Topics are covered in lectures. If you cannot do that, make sure you have completed it before you attempt the Problem Set for that week. Note that, in some cases, material in the K&K Reading may appear in the Problem Sets and Exams, *even if it has not been covered in lectures*. Finally, although they are not listed in the above table, the “Notes” at the end of many of the chapters of K&K are very valuable so please read those too.

Workload: Plan to work, on average, approximately 3 hours per week per credit hour on the course, outside lectures, including the labs. That is, 3x4=12 hours per week. (This “3 hours of work per credit hour per week” is a good rule-of-thumb for planning your time.)

Updated: 19 August 2018